Chapter 12

Probability

WHAT YOU WILL LEARN

- Empirical probability and theoretical probability
- Compound probability, conditional probability, and binomial probability
- Odds against an event and odds in favor of an event
- Expected value
- Tree diagrams

Copyright@ 2009 Pearson Education, Inc.

WHAT YOU WILL LEARN

- Mutually exclusive events and independent events
- The counting principle, permutations, and combinations

Section 1

The Nature of Probability

Definitions

- An experiment is a controlled operation that yields a set of results.
- The possible results of an experiment are called its outcomes.
- An event is a subcollection of the outcomes of an experiment.

Copyright © 2009 Pearson Education, Inc.

Definitions (continued)

- Empirical probability is the relative frequency of occurrence of an event and is determined by actual observations of an experiment.
- Theoretical probability is determined through a study of the possible outcomes that can occur for the given experiment.

Empirical Probability

number of times
$P(E)=\frac{\text { event } E \text { has occurred }}{\text { total number of times the }}$ experiment has been performed

- Example: In 100 tosses of a fair die, 19 landed showing a 3. Find the empirical probability of the die landing showing a 3.
- Let E be the event of the die landing showing a 3.

$$
P(E)=\frac{19}{100}=0.19
$$

The Law of Large Numbers

- The law of large numbers states that probability statements apply in practice to a large number of trials, not to a single trial. It is the relative frequency over the long run that is accurately predictable, not individual events or precise totals.

Section 2

Theoretical Probability

Addison
Wesley

Equally likely outcomes

- If each outcome of an experiment has the same chance of occurring as any other outcome, they are said to be equally likely outcomes.
- For equally likely outcomes, the probability of Event E may be calculated with the following formula.

$$
P(E)=\frac{\text { number of outcomes favorable to } E}{\text { total number of possible outcomes }}
$$

Example

- A die is rolled. Find the probability of rolling
- a) a 2.
- b) an odd number.
- c) a number less than 4 .
- d) an 8 .
- e) a number less than 9 .

Solutions: There are six equally likely outcomes: 1, 2, 3, 4, 5, and 6.

- a)
$P(2)=\frac{\text { number of outcomes that will result in a } 2}{\text { total number of possible outcomes }}=\frac{1}{6}$
- b) There are three ways an odd number can occur: 1, 3 or 5.

$$
P(\text { odd })=\frac{3}{6}=\frac{1}{2}
$$

- c) Three numbers are less than 4 .

$$
P(\text { number less than } 4)=\frac{3}{6}=\frac{1}{2}
$$

Solutions: There are six equally likely

 outcomes: 1, 2, 3, 4, 5, and 6 (continued)- d) There are no outcomes that will result in an 8.

$$
P(\text { number greater than } 8)=\frac{0}{6}=0
$$

- e) All outcomes are less than 9. The event must occur and the probability is 1 .

Important Facts

- The probability of an event that cannot occur is 0 .
- The probability of an event that must occur is 1 .
- Every probability is a number between 0 and 1 inclusive; that is, $0 \leq P(E) \leq 1$.
- The sum of the probabilities of all possible outcomes of an experiment is 1 .

Example

- A standard deck of cards is well shuffled. Find the probability that the card is selected.
a) a 10 .
b) not a 10 .
c) a heart.
d) an ace, 2 , or 3 .
e) diamond and spade.
f) a card greater than 4 and less than 7 .

Copyright © 2009 Pearson Education, Inc.

Example (continued)

a) a 10
b) not a 10
There are four 10's in a deck of 52 cards.

$$
\begin{aligned}
P(10)=\frac{4}{52}=\frac{1}{13} \quad P(\text { not a } 10) & =1-P(10) \\
& =1-\frac{1}{13} \\
& =\frac{12}{13}
\end{aligned}
$$

Example continued

c) a heart

There are 13 hearts in the deck.

$$
P(\text { heart })=\frac{13}{52}=\frac{1}{4}
$$

d) an ace, 2 or 3

There are 4 aces, 4 twos and 4 threes, or a total of 12 cards.
$P(\mathrm{~A}, 2$, or 3$)=\frac{12}{52}=\frac{3}{13}$

Copyright © 2009 Pearson Education, Inc.

Example continued

d) diamond and spade The word and means both events must occur. This is not possible.
P (diamond and spade)
$=\frac{0}{52}=0$
e) a card greater than 4 and less than 7
The cards greater than 4 and less than 7 are 5's and 6's (or a total of 8 cards).
$P(>4$ and $<7)=$
$P(5$ or 6$)$

$$
=\frac{8}{52}=\frac{2}{13}
$$

